Measures of Pressure

1 Pound Per Square Inch = 144 Pounds Per Square Foot $=0.068$ Atmosphere $=2.042$ Inches of Mercury at $6 \mathbf{2}^{\circ} \mathrm{F}=27.7$ Inches of Water at $62^{\circ} \mathrm{F}=2.31$ Feet of Water at $62^{\circ} \mathrm{F}$.

1 Atmosphere = 30 Inches of Mercury at $\mathbf{6 2}{ }^{\circ} \mathrm{F}=14.7$ Pounds Per Square Inch = 2116.3 Pounds Per Square Foot $=33.95$ Feet of Water at $\mathbf{6 2}{ }^{\circ} \mathrm{F}$.

1 Foot of Water at $\mathbf{6 2}{ }^{\circ} \mathrm{F}=62.355$ Pounds Per Square Foot $=0.433$ Pounds Per Square Inch.
1 Inch of Mercury at $\mathbf{6 2}{ }^{\circ} \mathrm{F}=1.132$ Feet of Water $=13.58$ Inches of Water $=0.491$ Pounds Per Square Inch.
Column of Water 12 Inches High, 1 Inch in Diameter = 341 Pounds
If temperature is kept constant, the volume of a given mass of gas is inversely proportional to the pressure which is exerted upon it.

Length Conversion Constants

Millimeters x.039370=Inches
Meters $\times 39.370=$ Inches
Meters x $3.2808=$ Feet
Meters x $1.09361=$ Yards
Kilometers x 3,280.8 $=$ Feet
Kilometers x $.62137=$ Statute Mile
Kilometers x $.53959=$ Nautical Miles

Inches $\times 25.4001=$ Millimeters
Inches x $0254=$ Meters
Feet x $.30480=$ Meters
Yards x . $91440=$ Meters
Feet x $.0003048=$ Kilometers
Statute Miles x $1.60935=$ Kilometers
Nautical Miles x $1.85325=$ Kilometers

Weight Conversion Constants

Grams x $.03527=$ Ounces (Avd.)
Grams x .033818 = Fluid Ounces (Water)
Kilograms x $35.27=$ Ounces (Avd.)
Kilograms $\times 2.20462=$ Pounds (Avd.)

Ounces (Avd.) x $28.35=$ Grams
Fluid Ounces (Water) x $29.57=$ Grams
Ounces (Avd.) x . $02835=$ Kilograms
Pounds (Avd.) x $45359=$ Kilograms

Circumference of a Circle

Circumference $=2 \pi r=\pi d=3.14159 d$
Area $=\pi r^{2}=\pi \frac{d^{2}}{4}=.78539 \mathrm{~d}^{2}$

Right Cylinder

$\mathrm{r}=$ radius
$\mathrm{h}=$ length

Volume $=\pi r^{2} h$
Surface Area $=2 \pi r(r+h)$
If end planes are parallel but not at 90° to h , the same formulas apply, but a slice at 90° through the cylinder must be used to determine r.

